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Abstract. We study gauge fields described by an(n − 1)-form α in a (2n − 1)-dimensional
Riemannian manifold satisfying the equations d∗ α = 0, LXα = dh. We show that minimal
surfaces may be associated with them that have a unique Hopf invariant. Some of these surfaces
are stable but the issue is not settled completely.

Consider a divergence-free(n − 1)-form α living in a (2n − 1)-dimensional Riemannian
manifoldM of fixed orientation. Hereafter, we will refer toα as a gauge field. Wherever
necessary a metric will be assumed. Suppose now thatα satisfies the equations

d ∗ α = 0 (1)

LXα = dh (2)

whereh is an(n− 2)-form, ∗α is the Hodge dual ofα, X is a divergence-free vector field
andLX is the Lie derivative with respect toX. The conventions of Eguchi, Gilkey and
Hanson [1] will be used below.

Examples ofα occur often. For instance, Berry’s adiabatic gauge field for a spin-1
2

particle in a constant magnetic field, namelyA = 1
2(1+ cos) dφ in θ − φ space satisfies (1)

and (2) forX = ∂/∂φ. As is well known,A is a connection of the Hopf bundle ofS3 over
S2 [2]. In Euclidean three-space the gauge fieldA = cosz dx − sinz dy satisfies the above
equations forα with X = y(∂/∂x) − x(∂/∂y) + ∂/∂z. This describes a helicoidal gauge
force-free field of infinite extent. An inviscid incompressible fluid can also be described
within the same framework [3].

In this letter we wish to describe the properties of fields satisfying equations (1) and
(2). In particular we will consider fields embedded inS3 (Berry’s example being a case in
point).

First of all, the vector fieldsXi form a Lie algebra with respect to the Lie brackets [, ]
because

L[Xi,Xj ]α = (LXiLXj − LXjLXi )α = d(LXi − LXj )h (3)

and [Xi,Xj ] is divergence-free ifXi andXj are. The vectorsXi constitute an involute
vector space in this sense. Thus several symmetries may be simultaneously considered.

We introduce next the energyEB and the Hopf invariantSAB

EB =
∫
M

∗B ∧ B ≡ (B, B)

SAB =
∫
M

α dα
(4)
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whereB ≡ dα is ann-form. We will refer toB as the magnetic field.SAB is a topological
invariant which measures the helicity of fields (see below). Under transformations generated
by X, SAB is an invariant, for by equations (1) and (2)

LXSAB = 0. (5)

Furthermore, ifX is a Killing vector field, then it is known thatLX∗ = ∗LX so we have

LXEB = 2
∫
∗B ∧ LXB = 0. (6)

by equation (2), i.e.EB is invariant under flows arising fromX (isometries). Since Killing
vector fields are divergence-free we conclude thatSAB andEB are invariant under isometries.

Equation (2) translates toLXB = LX dα = 0. In as much asB is ann-form, it describes
ann-surfaceS which we define here as the surface for whichB is proportional to the surface
arean-form of S, i.e. S is homologically trivial. Such surfaces may be termed magnetic
surfaces and have been discussed in the literature [4].

We show below thatS corresponds to a minimal surface. Let us first show thatX need
not be normal toS. Let E1, E2, . . . , En be a local orthonormal frame inS. From a well
known formula [5]

(LXB)(E1, E2, . . . , En) = XB(E1, E2, . . . , En)−
n∑
i=1

B(E1, . . . , [X,Ei ], . . . , En). (7)

By virtue of our discussion above, the left-hand side of equation (7) vanishes. Since
B(E1, E2, . . . , En) is the volume form andX is volume-preserving, the first term on the
right-hand side vanishes. It follows that the second term vanishes as well. On the other
hand, we may write for the second term on the right

−
∑
i

∑
j

B(E1, . . . , g([X,Ei ], Ej )Ej , . . . , En) = −B(E1, . . . , En)
∑
i

g([X,Ei ], Ei) = 0

(8)

(g(, ) denotes the metric). If the magnetic fieldB(E1, E2, . . . , En) does not vanish thenX
is normal toS and it belongs to the normal subspace ofS. However, it may happen that
the field vanishes and in this caseX need not commute withEi . We shall examine this
possibility later.

Now the mean curvature along a normalN to S, denoted byk(N), is

k(N) ≡ 1

n

∑
i

(DEiEi, N) = −
1

n

∑
i

(DEiN,Ei)

= −1

n

∑
i

(DNEi + [Ei,N ], Ei)

= −1

n

∑
i

1

2
DN(Ei, Ei)+ 1

n

∑
i

g([N,Ei ], Ei)

= 1

n

∑
i

g([N,Ei ], Ei). (9)

Here DV is the covariant derivative with respect to the vector fieldV . In the second
line above we had used the fact that DXY − DYX = [X, Y ] [6]. Since [N,Ei ] vanishes,
k(N) = 0 and so we have verified thatS is indeed a minimal surface.

PhysicallyLXB = 0 means the invariance ofB under flows generated byX. As the
above calculation shows, the fields satisfying equations (1) and (2) issue normally through
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a minimal surface. The magnetic surfaces are analogues of the equipotential surfaces in
electrodynamics or fluid mechanics, where these are important in their own right.

Because of our interpretation ofB as the volume form ofS, the condition thatS be
a minimal surface is equivalent, by equation (4), to the condition that energy is minimum.
This is analogous to surface energy in soap bubbles. We can go further by showing that
energy is a minimum when

dα = λ ∗ α (10)

whereλ is a constant. (If we accept equation (1), thenλ can only be a constant and in this
case it is clear thatEB = λSAB .)

To prove equation (10), consider the quantityEB = λSAB =
∫
α d{(−)n ∗dα−λα}. On

varying with respect toα, the above result readily emerges. To verify that we have indeed
minimum field energy, defineI ≡ (α, α). SAB satisfies the Schwarz inequalityS2

AB 6 I ·EB
with equality holding precisely when equation (10) is true. SinceSAB is a topological
invariant, it follows that equation (10) is indeed the condition for minimum energy. (One
may add to the right-hand side of equation (10) ann-form ∗dβ but this contributes a total
divergence to the field energy and may be ignored.) In the minimal-energy case, one can
show directly from equation (10) that

1α = λ2α (11)

where1 = δd+ dδ is the Laplacian, andδ = (−)pn+n+1 ∗ d∗ the co-derivative acting on a
p-form in n-space.

Finally, we give some remarks about the Hopf invariant. The Hopf invariant gives the
linking number of two disjoint manifolds and is a genuine topological invariant [7]. In the
minimal energy case, if we normalizeα such that(α, α) = 1, thenλ is an integer, namely
the linking number. The Hopf invariant classifies manifolds into equivalence classes. We
can further appreciate the relevance ofSAB as follows. InR3 let C be a closed curve
on a surfaceS and let the vector fieldA be everywhere normal toS. Then the loop
integral

∫
C
A dl vanishes. By Stokes’ theorem this integral is also equal to

∫
S ′ ∇ × A · dσ

whereC bounds the surfaceS ′ ⊂ S. But this surface integral does not vanish in general
unlessA · ∇ × A = 0 everywhere. This translates, in simply connected three-space, to
the impossibility of constructing (even locally) surfaces that are normal toA unless the
conditionA ·∇ ×A = 0 holds. We shall show below that this is equivalent to the vanishing
of the Hopf invariant. Thus the nonvanishing of the Hopf invariant signals a nontrivial
geometric structure. In the minimal-energy case, equation (10) indicates that a nontrivial
manifold structure is involved.

It is known that in Euclidean space there are no compact minimal surfaces. In fact it
can be shown that the helicoid is the only minimal surface in Euclidean space satisfying
equations (1) and (2). Our discussion below will be limited to compact fields.

From this point on, we focus attention on gauge fields inS3. First we show by a
different method that the association with minimal surfaces holds for such gauge fields. Let
X be a Killing field and letf = 1

2〈X,X〉 be half of its length squared. Guided by the work
above we compute the Laplacian off , defined here alternatively as a contraction

1f =
∑
i

〈DEi gradf,Ei〉. (12)

From the definition〈gradf,X〉 = Xf , valid for any vector fieldX, we obtain gradf =
−DXX. Now we invoke the definition of the Riemannian curvature tensorR for a set of
vectors,V,W andX [6]:

〈DVDXX,W 〉 = 〈D[V,X]X − RVXX + DXDVX,W 〉. (13)
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BecauseX is a Killing vector, i.e. it satisfies〈DVX,X〉 + 〈DXX, V 〉 = 0, the last two
equations yield

1f = −Ric(X,X)+ trace(DX,DX), (14)

where Ric(X,X) = ∑
Ei
〈RXEiX,Ei〉 is the Ricci tensor. Equation (14) holds for any

Killing vector X. On the sphere, however,X = xi∂j − xj∂i so thatf has the simple form
1
2(x

i)2+ 1
2(x

j )2. Also DX is zero or normal to the sphere so tr(DX,DX) vanishes. Because
the sphereS3 has constant sectional curvature, we have

Ric(X,X) = 2〈X,X〉/r2 (15)

wherer = 1 is the radius ofS3. With thef given above, the left-hand side of equation (14)
may be cast as〈Dxi,Dxi〉 + 〈xi,1xi〉 and finally we obtain

1xi = −2xi (16)

as the equation for the components occurring in the Killing vectorX which generates
isometry transformations on the fields. Alternatively, thexi describe the coordinates of the
fields embedded inS3 upon whichX operates. (In Euclidean space we haver → ∞ so
equation (16) is replaced by1xi = 0. One can verify that the helicoid mentioned in the
introduction satisfies it.)

It is well known that equation (16) is the equation of a minimaln = 2 surface embedded
in S3 [8]. Thus we have shown that the gauge fields obeying equations (1) and (2) and
embedded inS3 correspond to minimal surfaces.

To illustrate this, let us consider Berry’s example. It is really a Dirac monopole in
parameter space. The Dirac vector potential is just the connection ofS3, the principalU(1)
bundle overS2 [9]. If we think of S3 as a subset ofC2 = C × C, the Killing field is
generated by the rotation of one of the complex factors and is tangent to two circles.

We employ real coordinatesy1, y2, y3, y4 onC2 with (y1)2+ (y2)2+ (y3)2+ (y4)2 = 1
for S3. The corresponding Dirac (connection) 1-form is

A = 1

π
(y1 dy2+ y3 dy4). (17)

In S3, the volume form is proportional to

σ = y1 dy2 ∧ dy3 ∧ dy4− y2 dy1 ∧ dy3 ∧ dy4+ y3 dy1 ∧ dy2 ∧ dy4− y4 dy1 ∧ dy2 ∧ dy3

so we find dA = ∗A, and of course d∗ A = 0. Moreover

1A = A (18)

and the Hopf invariant is∫
S3
A dA = 2

π2

∫
S3
y1 dy2 dy3 dy4

=
∫ π

0

∫ π

0

∫ 2π

0
sin4 α sin3 φ cos2 θ dθ dφ dα = 1 (19)

where the spherical coordinatesx1 = sinα sinφ cosθ , x2 = sinα sinφ sinθ , x3 =
sinα cosφ, x4 = cosα were introduced. Thus we have verified equations (4) and (11)
together with the linking number interpretation ofλ.

To obtain the corresponding magnetic surfaces, we employ the Hopf mapπ : S3→ S2

[9]. ParametrizingS3 by z1 = cos1
2θei91, z2 = sin 1

2θei92, we have

π(z1, z2) = (z∗1z2+ z∗2z1,−iz∗1z
2+ iz∗2z1, |z1|2− |z2|2)

= (sinθ cosφ, sinθ sinφ, cosθ) (20)
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whereφ = 92 − 91. If we set (x1, x2, x3, x4) = (sinθ cosφ, sinθ sinφ, cosθ, 0) as the
coordinates of the magnetic surface inS3, we find that

1xi = −2xi i = 1, 2, 3, 4. (21)

This verifies equation (16) and, of course, the surface is a patch onS2.
In 1970 Lawson [10] showed that there are minimal embeddings intoS3 of surfaces of

arbitrary genus. It would be interesting to relate these to physically realizable systems.
We show next that gauge fields inS3 that have the same Hopf invariant are equivalent up

to a gauge transformation. A Riemannian metric will be understood to have been introduced.
Thus, suppose that two gauge fieldsA andB exist such that∫

S3
A dA =

∫
S3
B dB = n. (22)

It is easy to verify from this and the fact thatS3 is closed that∫
S3
(A+ B) d(A− B) = 0. (23)

We now show that for arbitrary fieldsω and ω̄ in S3 satisfying the condition∫
ω dω̄ = 0 (24)

one of them must vanish or be exact.
Any gauge fieldω in a compact and closed manifold can be written as a sum of

its harmonic partω0, its longitudinal part dα and its transverse partδβ. By virtue of
equation (2), the first two vanish so we have simplyω = δβ, i.e. ω is transverse. Now
we expandω in terms of a set of a normalized basis of transverse eigenformsφn of the
Laplacian1 : 1ϕn = λ2

nϕn, δϕn = 0, (ϕn, ϕm) = δnm. The eigenvalues are nonvanishing.
Thus,

ω =
∞∑
n=1

cnϕn (25)

where thecn are expansion coefficients. We can also define another normalized basis of
transverse eigenformsφn for ω̄:

φn = − 1

λn
∗ dϕn. (26)

This is possible because the Hodge dual provides a natural isomorphism between the space
of 1-forms and the corresponding space of 2-forms in compact 3-space. Observe also that
∗d is linear and invertible. We can verify that1φn = λ2

nφn, (φn, φm) = δnm, δφn = 0.
Hence we may write a parallel expansion forω̄:

ω̄ =
∞∑
n=1

bnφn. (27)

We now evaluate equation (24):

0=
∫
S3
ω dω̄ =

∑
n,m

cnbm

∫
S3
ϕn dφm =

∑
n

cnbnλn (28)

where we had used the various properties of the eigenforms defined above. Since the
eigenvaluesλn are nonvanishing and can be arranged in ascending order, this result holds
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if and only if all the expansion coefficientscn or all the expansion coefficientsbn vanish.
Therefore equation (23) holds if and only if

A = ±B. (29)

Because the Hopf invariant is gauge invariant we may relax this condition to

A = ±B + df (30)

wheref is a smooth 0-form. This shows that two gauge fields satisfying equation (22) are
essentially gauge equivalent.

Two remarks are in order. First, consider equation (8) once again inS3. If the magnetic
field vanishes, then

∑
g([X,Ei ], Ei) need not vanish. ThusX need not be normal to the

magnetic surface. It is known that a compact simply connected three-manifold has rank one,
that is, two commuting vectors must necessarily be linearly dependent somewhere in the
manifold (Lima’s theorem). A sufficient condition that a three-manifold be simply connected
is thatA dA vanishes. Thus a three-dimensional compact space in whichA dA = 0 has
zero magnetic field everywhere. It is not difficult to construct a field inS3 with zero
linking number, namelyA = 1

r
1φ̂, where1 is the 2× 2 identity matrix. The magnetic field

B = ∇ × A vanishes for this case. Since we know now that two fields with zero linking
number are gauge equivalent, it follows that gauge fields with zero linking number inS3

must necessarily have vanishing magnetic field. Secondly, the argument above was cast for
three-dimensional space. It can be extended to any odd-dimensional compact space. The
only modification is in the definition (26), which should read instead,

φn = (−)2p−1−p−1 1

λn
∗ dϕn (31)

for p-eigenforms in a(2p − 1)-dimensional compact manifold.
A final characteristic of the surfaces we have been considering will be discussed.

It is widely known that most minimal surfaces are really unstable, that is, their second
variation is negative. We also observed in equation (6) that the energy densityB ∧ ∗B is
invariant underX, so we need consider only normal variations of the surface area

∫
dσ .

It is known thatδ
∫

dσ = −2
∫
HV dσ , whereV is the normal variation of the surface

x(u, v)→ x(u, v)+ tV (u, v)n̂, t ∈ (−ε, ε) [8]. BecauseH vanishes for minimal surfaces,
we see that the first variation of the surface area vanishes and only the second variation of
the area is required (the energy density remaining invariant):

δ2EB = −2(B ∧ ∗BδH). (32)

For compact and closed two-manifolds inS3 it can be shown that [11]

δH = 1
2(1V + 2KV ) (33)

whereK = 1 is the constant sectional curvature ofS3 and1 the Laplacian on the surface.
Limiting ourselves to normal variations proportional to the coordinates of the surface, by
virtue of equation (16), we findδH = 0 and so for gauge fields inS3

δ2EB = 0. (34)

For the case of the helicoidal field inR3, which is non-compact, the corresponding normal
variation ofH is [8]

δH = 1
2(1V + 4H 2V − 2KV ) (35)

whereH = 0 for a helicoid andK(< 0) is its Gaussian curvature. Since minimal surfaces
in R3 satisfy1x = 0, we find then that

δ2EB < 0. (36)



Letter to the Editor L749

Thus, we have established the stability of the helicoid. But gauge fields inS3 appear to
require further study. It would be necessary to consider more general surface and field
variations.

In conclusion, we have shown that minimal surfaces may be associated with fields
characterized by equations (1) and (2) and that inS3 such fields have a unique Hopf
invariant. The issue of stability of the surfaces is not settled: inR3 it seems that the
surfaces are stable, whereas inS3 further study of higher variations is required.
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