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Abstract. We study gauge fields described by @n— 1)-form « in a (22 — 1)-dimensional
Riemannian manifold satisfying the equations d = 0, Lya = dh. We show that minimal
surfaces may be associated with them that have a unique Hopf invariant. Some of these surfaces
are stable but the issue is not settled completely.

Consider a divergence-fre@ — 1)-form « living in a (2n — 1)-dimensional Riemannian
manifold M of fixed orientation. Hereafter, we will refer @ as a gauge field. Wherever
necessary a metric will be assumed. Suppose nowotlsattisfies the equations

dxa=0 Q)

Lyxa =dh 2)
whereh is an(n — 2)-form, x« is the Hodge dual of, X is a divergence-free vector field
and Ly is the Lie derivative with respect t&. The conventions of Eguchi, Gilkey and
Hanson [1] will be used below.

Examples ofa occur often. For instance, Berry’s adiabatic gauge field for a %pin-
particle in a constant magnetic field, namely= %(1+ cos d¢ in 6 — ¢ space satisfies (1)
and (2) forXx = 3/8¢. As is well known,A is a connection of the Hopf bundle 6f over
52 [2]. In Euclidean three-space the gauge fidld= cosz dx — sinz dy satisfies the above
equations fore with X = y(3/0x) — x(d/dy) + 9/9z. This describes a helicoidal gauge
force-free field of infinite extent. An inviscid incompressible fluid can also be described
within the same framework [3].

In this letter we wish to describe the properties of fields satisfying equations (1) and
(2). In particular we will consider fields embeddedSf (Berry’s example being a case in
point).

First of all, the vector fields(; form a Lie algebra with respect to the Lie bracketf [
because

Lix, xjo = (Lx,Lx; — Lx,Lx,)a = d(Lx, — Lx,)h ()

and [X;, X;] is divergence-free ifX; and X; are. The vectors(; constitute an involute
vector space in this sense. Thus several symmetries may be simultaneously considered.
We introduce next the energyz and the Hopf invariant, s

EB=/ «B A B = (B, B)
M

SABI/ o do
M
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where B = do is ann-form. We will refer to B as the magnetic fieldS, 5 is a topological
invariant which measures the helicity of fields (see below). Under transformations generated
by X, S.p is an invariant, for by equations (1) and (2)

LxSABIO. (5)

Furthermore, ifX is a Killing vector field, then it is known that xx = xLx so we have
LxEBIZ/*B/\LxBZO. (6)

by equation (2), i.eEp is invariant under flows arising from¥ (isometries). Since Killing
vector fields are divergence-free we conclude thagtand E g are invariant under isometries.
Equation (2) translates tby B = Lx de = 0. In as much a8 is ann-form, it describes
ann-surfaceS which we define here as the surface for whilis proportional to the surface
arean-form of §, i.e. § is homologically trivial. Such surfaces may be termed magnetic
surfaces and have been discussed in the literature [4].
We show below thaF corresponds to a minimal surface. Let us first show thateed
not be normal taS. Let Eq, E>, ..., E, be a local orthonormal frame ifi. From a well
known formula [5]

(LxB)(E1,E2,...,E)) = XB(E1,E, ..., E,) — Z B(E1,...,[X,El, ..., Ep). )
i=1

By virtue of our discussion above, the left-hand side of equation (7) vanishes. Since
B(E1, E,, ..., E,) is the volume form and{ is volume-preserving, the first term on the
right-hand side vanishes. It follows that the second term vanishes as well. On the other
hand, we may write for the second term on the right

—> > B(E1.....g(X.E]. ENEj.....E)) = —B(E1,....E)) Y _g(X.E]. E)=0
i j i

8

(g(,) denotes the metric). If the magnetic fieldE;, E», ..., E,;) does not vanish theX
is normal toS and it belongs to the normal subspaceSofHowever, it may happen that
the field vanishes and in this cage need not commute witlE;. We shall examine this
possibility later.

Now the mean curvature along a nornMélto S, denoted by (N), is

1 1
k(N) = - E (Dg Ei, N) = - E (Dg, N, Ei)
1
= Ei (DNE; + [Ei, N], E))
1 1 1
= Ei :EDN(E,», E)+~ §i g(N, Ej], E))

= %Zg([N, Ej], Ey). ©)

Here Dy is the covariant derivative with respect to the vector fi#ld In the second
line above we had used the fact thayD— Dy X = [X, Y] [6]. Since [N, E;] vanishes,
k(N) = 0 and so we have verified th&tis indeed a minimal surface.
Physically Ly B = 0 means the invariance & under flows generated b¥. As the
above calculation shows, the fields satisfying equations (1) and (2) issue normally through
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a minimal surface. The magnetic surfaces are analogues of the equipotential surfaces in
electrodynamics or fluid mechanics, where these are important in their own right.

Because of our interpretation & as the volume form of, the condition thatS be
a minimal surface is equivalent, by equation (4), to the condition that energy is minimum.
This is analogous to surface energy in soap bubbles. We can go further by showing that
energy is a minimum when

do = A *xa (20)

where is a constant. (If we accept equation (1), thenan only be a constant and in this
case it is clear thakg = AS4p.)

To prove equation (10), consider the quantity = 1S5 = [ o d{(—)" *da —Aa}. On
varying with respect ta, the above result readily emerges. To verify that we have indeed
minimum field energy, defing = (o, @). S4p satisfies the Schwarz inequali§§, < 1-Ep
with equality holding precisely when equation (10) is true. Sisge is a topological
invariant, it follows that equation (10) is indeed the condition for minimum energy. (One
may add to the right-hand side of equation (10)rmaform «dg but this contributes a total
divergence to the field energy and may be ignored.) In the minimal-energy case, one can
show directly from equation (10) that

Aa = \a (11)

whereA = §d + ds is the Laplacian, and = (—)?"*"*1 « d« the co-derivative acting on a
p-form in n-space.

Finally, we give some remarks about the Hopf invariant. The Hopf invariant gives the
linking number of two disjoint manifolds and is a genuine topological invariant [7]. In the
minimal energy case, if we normalizesuch that(e, @) = 1, thena is an integer, namely
the linking number. The Hopf invariant classifies manifolds into equivalence classes. We
can further appreciate the relevance Sy as follows. InR3 let C be a closed curve
on a surfaceS and let the vector fieldd be everywhere normal t§. Then the loop
integral [ A d/ vanishes. By Stokes’ theorem this integral is also equalt¥ x A - do
where C bounds the surfacd’ c S. But this surface integral does not vanish in general
unlessA - V x A = 0 everywhere. This translates, in simply connected three-space, to
the impossibility of constructing (even locally) surfaces that are normal tanless the
conditionA -V x A = 0 holds. We shall show below that this is equivalent to the vanishing
of the Hopf invariant. Thus the nonvanishing of the Hopf invariant signals a nontrivial
geometric structure. In the minimal-energy case, equation (10) indicates that a nontrivial
manifold structure is involved.

It is known that in Euclidean space there are no compact minimal surfaces. In fact it
can be shown that the helicoid is the only minimal surface in Euclidean space satisfying
equations (1) and (2). Our discussion below will be limited to compact fields.

From this point on, we focus attention on gauge fieldsSt First we show by a
different method that the association with minimal surfaces holds for such gauge fields. Let
X be a Killing field and letf = %(X, X) be half of its length squared. Guided by the work
above we compute the Laplacian 6f defined here alternatively as a contraction

Af =) (Dr, gradf, E;). (12)

From the definition(gradf, X) = Xf, valid for any vector fieldX, we obtain gragd =
—DxX. Now we invoke the definition of the Riemannian curvature tengdor a set of
vectors,V, W and X [6]:

(DyDx X, W) = (Dv,x;]X — RyxX + DxDy X, W). (13)
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BecauseX is a Killing vector, i.e. it satisfiegDy X, X) + (DxX, V) = 0, the last two
equations yield

Af = —Ric(X, X) + traceDX, DX), (14)

where Ri¢X, X) = ZE,(RXE[X, E;) is the Ricci tensor. Equation (14) holds for any
Killing vector X. On the sphere, howevek, = x'9; — x/9; so thatf has the simple form
%(xi)2+ %(xj)z. Also DX is zero or normal to the sphere s@OX, DX) vanishes. Because
the spheres® has constant sectional curvature, we have

Ric(X, X) = 2(X, X)/r? (15)

wherer = 1 is the radius of3. With the f given above, the left-hand side of equation (14)
may be cast agDx’, Dx’) + (x?, Ax’) and finally we obtain

Axl = —2x (16)
as the equation for the components occurring in the Killing vecfowhich generates
isometry transformations on the fields. Alternatively, #iedescribe the coordinates of the
fields embedded ir§2 upon whichX operates. (In Euclidean space we have> oo so
equation (16) is replaced bgx’ = 0. One can verify that the helicoid mentioned in the
introduction satisfies it.)

It is well known that equation (16) is the equation of a minimat 2 surface embedded
in $° [8]. Thus we have shown that the gauge fields obeying equations (1) and (2) and
embedded irs® correspond to minimal surfaces.

To illustrate this, let us consider Berry’s example. It is really a Dirac monopole in
parameter space. The Dirac vector potential is just the connectis?, tiie principall/ (1)
bundle overs? [9]. If we think of S* as a subset 0€? = C x C, the Killing field is
generated by the rotation of one of the complex factors and is tangent to two circles.

We employ real coordinates', y2, y3, y* on C2 with (y1)2 4 (y2)2+ (y3)2+ (y*)2 =1
for $°. The corresponding Dirac (connection) 1-form is

1
A= ;(yl dy? + y3dy*). (17)

In S3, the volume form is proportional to
o = ytdy? Ady® Ady* — y2dy! A dy® Ady* + y3dyt Ady? A dy? — y*dy! A dy? A dy®
so we find &t = %A, and of course ¢ A = 0. Moreover

AA=A (18)
and the Hopf invariant is

/ AdA:%/ yldyzdy?’dy4
S3 b/ $3

b4 T 2
= / / / sinfa sin®¢ cog 6 dj dgp do = 1 (19)
o Jo Jo

where the spherical coordinateg = sinasing cosd, x, = Sinasingsing, x3 =
sina cos¢, x4 = cosa were introduced. Thus we have verified equations (4) and (11)
together with the linking number interpretation xf
To obtain the corresponding magnetic surfaces, we employ the Hoptimaff — §?
[9]. ParametrizingS® by z; = cos30€¥:, z, = sin30€¥, we have

(21, 22) = (2522 + Thz1, —iz52% +izhza, |21l® — |22/
= (Sin6 cosy, sind sing, cosH) (20)
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where¢ = W, — W;. If we set(xy, x2, x3, x4) = (Sin6 cose, sind sing, cosd, 0) as the
coordinates of the magnetic surfaceS#, we find that

Ax; = —2x; i=1234. (21)

This verifies equation (16) and, of course, the surface is a patc$f.on
In 1970 Lawson [10] showed that there are minimal embeddingsS#iaf surfaces of
arbitrary genus. It would be interesting to relate these to physically realizable systems.
We show next that gauge fields $ that have the same Hopf invariant are equivalent up
to a gauge transformation. A Riemannian metric will be understood to have been introduced.
Thus, suppose that two gauge fieldlsand B exist such that

/AdA:/ BdB = n. (22)
S3 S3

It is easy to verify from this and the fact th&# is closed that
(A+B)d(A—-B)=0. (23)
SB
We now show that for arbitrary fields and® in S satisfying the condition

/ ©dd =0 (24)

one of them must vanish or be exact.

Any gauge fieldw in a compact and closed manifold can be written as a sum of
its harmonic partw?, its longitudinal part d¢ and its transverse pa#g. By virtue of
equation (2), the first two vanish so we have simply= §8, i.e. w is transverse. Now
we expandw in terms of a set of a normalized basis of transverse eigenfgrmsf the
LaplacianA : Ag, = A2¢,, 8¢, = 0, (¢4, o) = 8.m. The eigenvalues are nonvanishing.
Thus,

00
0=3 e, (25)
n=1

where thec, are expansion coefficients. We can also define another normalized basis of
transverse eigenformg, for @:

1
¢n = _k_ * d(pn (26)

This is possible because the Hodge dual provides a natural isomorphism between the space
of 1-forms and the corresponding space of 2-forms in compact 3-space. Observe also that
xd is linear and invertible. We can verify that¢, = Aﬁqﬁn, (Dns Om) = Sum, 60, = 0.

Hence we may write a parallel expansion far

o0
>=Y_ bupy. (27)
n=1
We now evaluate equation (24):

O = a)dJ) = chbm/ (2 d¢m = chbn)"n (28)
S3 s n

n,m

where we had used the various properties of the eigenforms defined above. Since the
eigenvalues., are nonvanishing and can be arranged in ascending order, this result holds
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if and only if all the expansion coefficients or all the expansion coefficients, vanish.
Therefore equation (23) holds if and only if

A =4B. (29)
Because the Hopf invariant is gauge invariant we may relax this condition to
A==+B+df (30)

where f is a smooth 0-form. This shows that two gauge fields satisfying equation (22) are
essentially gauge equivalent.

Two remarks are in order. First, consider equation (8) once agaif. iff the magnetic
field vanishes, the}_ ¢([ X, E;], E;) need not vanish. ThuX need not be normal to the
magnetic surface. It is known that a compact simply connected three-manifold has rank one,
that is, two commuting vectors must necessarily be linearly dependent somewhere in the
manifold (Lima’s theorem). A sufficient condition that a three-manifold be simply connected
is that A dA vanishes. Thus a three-dimensional compact space in whith = 0 has
zero magnetic field everywhere. It is not difficult to construct a fieldSthwith zero
linking number, nameli = %1¢3, wherel is the 2x 2 identity matrix. The magnetic field
B = V x A vanishes for this case. Since we know now that two fields with zero linking
number are gauge equivalent, it follows that gauge fields with zero linking numb&t in
must necessarily have vanishing magnetic field. Secondly, the argument above was cast for
three-dimensional space. It can be extended to any odd-dimensional compact space. The
only madification is in the definition (26), which should read instead,

bn = <—>2P+"*lki * dp, (31)

for p-eigenforms in a2p — 1)-dimensional compact manifold.

A final characteristic of the surfaces we have been considering will be discussed.
It is widely known that most minimal surfaces are really unstable, that is, their second
variation is negative. We also observed in equation (6) that the energy dénsityB is
invariant underX, so we need consider only normal variations of the surface Axka
It is known that§ [do = —2 [ HV do, whereV is the normal variation of the surface
x(u,v) —> x(u,v)+tVu,v)n,t € (—¢, ¢) [8]. BecauseH vanishes for minimal surfaces,
we see that the first variation of the surface area vanishes and only the second variation of
the area is required (the energy density remaining invariant):

8°Ep = —2(B A %xBSH). (32)
For compact and closed two-manifolds $& it can be shown that [11]
8H = 3(AV +2KV) (33)

whereK = 1 is the constant sectional curvature$fand A the Laplacian on the surface.
Limiting ourselves to normal variations proportional to the coordinates of the surface, by
virtue of equation (16), we findH = 0 and so for gauge fields is®

8?Ep = 0. (34)
For the case of the helicoidal field iR®, which is non-compact, the corresponding normal
variation of H is [8]

8H = 3(AV +4H?V — 2KV) (35)

where H = 0 for a helicoid andK (< 0) is its Gaussian curvature. Since minimal surfaces
in R® satisfy Ax = 0, we find then that

(SZEB < 0. (36)



Letter to the Editor L749

Thus, we have established the stability of the helicoid. But gauge fieldS mppear to
require further study. It would be necessary to consider more general surface and field
variations.

In conclusion, we have shown that minimal surfaces may be associated with fields
characterized by equations (1) and (2) and thatSthsuch fields have a unique Hopf
invariant. The issue of stability of the surfaces is not settled:R#it seems that the
surfaces are stable, whereasSthfurther study of higher variations is required.
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